8 N-Channel Latchable Power MOSFET Array

Ordering Information

V _{DD}	R _{O(ON)}	I _{O(ON)}	I _{O(OFF)}	Order Num	ber/Package
(max)	(max)	(min)	(max)	SO-16	Die
320V	350Ω	25mA	-1.0nA	AN0332CG	AN0332ND

^{*}Average current per channel, measured with all eight channels connected in parallel.

Features

	Low drain to source leakage
	Interfaces directly to TTL and CMOS logic
	8 independent channels
	Low crosstalk between channels
	Low power dissipation
	Freedom from secondary breakdown
	Serial data input
П	On-chip decoder, latch with reset and write disable circuitry

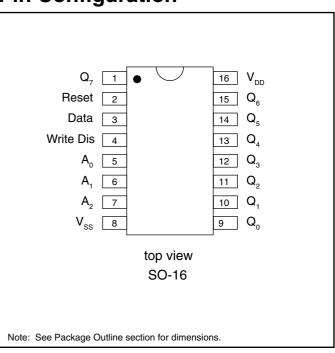
General Description

The Supertex AN0332 is an 8 N-Channel 320V common source power MOSFET array with a CMOS 8 bit addressable latch. The outputs are guaranteed to have very low leakage current. The outputs are addressed by logic inputs A0, A1, and A2. The addressed and unaddressed output can be turned on or off by the data, reset, and write disable inputs.

The AN0332 is ideally suited for low leakage/high impedance measurements, providing excellent accuracy as well as resolution for automatic bare board test equipment and other applications.

Applications

High impedance/low leakage measurements for bare board testers
High voltage piezoelectric transducer drivers
High voltage electroluminescent panel drivers
High voltage electrostatic array drivers
General multi-channel driver arrays


Absolute Maximum Ratings¹

Output voltage, V _{DD}	320V
Logic supply voltage, V _{DD}	-0.5V to +15V
Logic input levels, all inputs	-0.5V to V _{DD}
Operating and storage temperature range	-55°C to +150°C
Soldering temperature ²	300°C
Channel-to-channel crosstalk	10mV/V

Notes

- 1. All voltages are referenced to $V_{\mbox{\scriptsize SS}}$.
- 2. Distance of 1.6mm from case for 10 seconds.

Pin Configuration

Electrical Characteristics (@ 25°C and V_{DD} = 12V unless otherwise specified)

DC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
I _{O(OFF)}	Off-State Output Current			8.0	nA	V _O = max. rating, 8 outputs connected in parallel
I _{O(ON)}	On-State Output Current	25			mA	V _O = 25V
R _{O(ON)}	On-State Output Resistance			350	Ω	I _O = 10mA
$\Delta R_{O(ON)}$	Change in R _{O(ON)} with High Temperature		0.8		%/°C	I _O = 10mA
I _{DDQ}	Quiescent Logic Supply Current		0.05	16.5	μΑ	
V _{IL}	Input Low Voltage			3.5	V	
V _{IH}	Input High Voltage	12			V	
I _{IN}	Input Current			1.0	μΑ	

Note:

ristics - OBSOLETE -

AC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Fig. 1*	Conditions
t _{D(ON)}	Turn-On Delay Time		800		ns	1a	
t _{D(OFF)}	Turn-Off Delay Time		800		ns	1b	
t _r	Rise Time		200		ns	10	
t _f	Fall Time		200		ns	11	
t _{PHL} , t _{PLH}	Propagation Delay Time from Write Disable to Output		87		ns	2	V _O = 25V, I _O = 10mA
t _{PHL} , t _{PLH}	Propagation Delay Time from Reset to Output		87		ns	3	
t _{PHL} , t _{PLH}	Propagation Delay Time from Address to Output		107		ns	9	
t _W	Minimum Pulse Width – Data		50	100	ns	4	
t _W	Minimum Pulse Width – Address		100	200	ns	8	
t _W	Minimum Pulse Width – Reset		40	75	ns	5	
t _S	Setup Time – Data to Write Disable	50			ns	6	
t _H	Hold Time – Data to Write Disable`	75			ns	7	
C _{IN}	Input capacitance - Any Input		5.0	7.5	pF		

^{*}Refer to circled numbers on Timing Diagram (Figure 1).

Note:

^{1.} All voltages are referenced to V_{ss}.

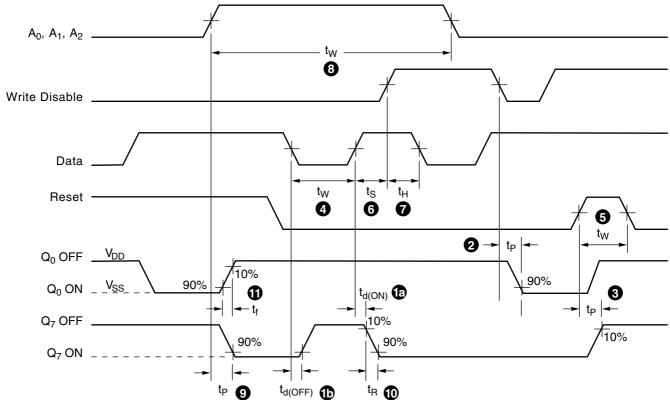
^{1.} All voltages are referenced to $V_{\rm ss}$.

Recommended Operating Conditions

(For maximum reliability, nominal operating conditons should be selected so that operation is always within the following ranges.)

Symbol	Parameter	V _{DD}	Min	Max	Unit
V_{DD}	Logic supply voltage		10.0	13.2	V
V _O	Output Voltage referenced to V _{SS}		0	320	V
V _{IH}	Input High Voltage	12V	V _{DD} - 2	V _{DD}	V
V _{IL}	Input Low Voltage	12V	0	2.0	V
T _A	Operating Free-Air Temperature		0	70	°C

Note:


^{1.} All voltages are referenced to V_{ss}.

Mode Selection

Data	Write Disable	Reset	Addressed Output	Unaddressed Outputs
H L	L	L	On Off	Holdspriv.
H L	Н	L	Holdspriv.	Holdspriv.
H L	L	Н	On Off	Off
H L	Н	Н	Off	Off

Timing Diagram

Functional Block Diagram

OBSOLETE - $V_{DD}(+)$ Data ○ Write Disable [○] --○ **Q**₇ Latch --○ Q₆ Latch $\multimap Q_5$ Latch A₀ --○ Q₄ Latch 3:8 --○ Q₃ Decoder Latch A₂ ---○ Q₂ Latch --○ Q₁ Latch $\multimap Q_0$ Latch Reset O-

○ V_{SS} (–)